AIM: Symmetric Primitive for Shorter Signatures with Stronger Security

Seongkwang Kim ${ }^{1}$
Mincheol Son
Dukjae Moon ${ }^{1}$
Sangyub Lee ${ }^{1}$
Jihoon Cho ${ }^{1}$
Jooyoung Lee ${ }^{2}$
${ }^{1}$ Samsung SDS, Seoul, Korea
${ }^{2}$ KAIST, Daejeon, Korea
${ }^{3}$ Sungshin Women's University, Seoul, Korea

Brief Overview

- Background
- MPC-in-the-Head (MPCitH) paradigm is a conversion from MPC to ZKP
- A signature scheme is obtained if MPCitH is combined with Fiat-Shamir transform and OWF

Brief Overview

- Background
- MPC-in-the-Head (MPCitH) paradigm is a conversion from MPC to ZKP
- A signature scheme is obtained if MPCitH is combined with Fiat-Shamir transform and OWF
- Contribution
- We propose symmetric primitive AIM for shorter MPCitH-based signatures
- We reduce signature size by $\geq 8 \%$ compared to previous MPCitH-based signature schemes

Brief Overview

- Background
- MPC-in-the-Head (MPCitH) paradigm is a conversion from MPC to ZKP
- A signature scheme is obtained if MPCitH is combined with Fiat-Shamir transform and OWF
- Contribution
- We propose symmetric primitive AIM for shorter MPCitH-based signatures
- We reduce signature size by $\geq 8 \%$ compared to previous MPCitH-based signature schemes
- Amendment
- Recently, there have been multiple analyses on AIM
- We patched AIM to AIM2 without significant performance degradation

MPC-in-the-Head Paradigm

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f
2. Prover commits to all the views of the parties

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f
2. Prover commits to all the views of the parties
3. Verifier sends a random challenge

MPC-in-the-Head Paradigm

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

1. Prover simulates a multiparty computation of a function f
2. Prover commits to all the views of the parties
3. Verifier sends a random challenge
4. Prover opens the challenged view
5. Verifier checks consistency

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function
- An arithmetic circuit is efficiently provable by BN++ if:
- Arithmetic is over a large field (of size $\approx \lambda$)
- Small number of multiplications
- The same multiplier is repeated $\left(x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}\right)$
- An output of a multiplication is already known (e.g., $S(x)=x^{-1} \Rightarrow x \cdot S(x)=1$)

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function
- An arithmetic circuit is efficiently provable by BN++ if:
- Arithmetic is over a large field (of size $\approx \lambda$)
- Small number of multiplications
- The same multiplier is repeated $\left(x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}\right)$
- An output of a multiplication is already known (e.g., $y=x^{-1} \Rightarrow x y=1$)
- Given a one-way function $f(x)=y, \mathrm{BN}++$ proof of x becomes a signature scheme

Symmetric Primitive AIM

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
- S-boxes on a large field
- Low multiplicative complexity

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
- S-boxes on a large field
- Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
- MiMC (AC 16, AC 20)
- Agrasta (C 18, AC 21)
- Jarvis/Friday (ePrint 18, AC 19)
- Chaghri (CCS 22, EC 23)

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
- S-boxes on a large field
- Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
- MiMC (AC 16, AC 20)
- Agrasta (C 18, AC 21)
- Jarvis/Friday (ePrint 18, AC 19)
- Chaghri (CCS 22, EC 23)

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
- If prover needs to check multiple multiplications with a same multiplier,
- e.g. $x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}$
- Then, the prover can prove them in a batched way
- More same multiplier \rightarrow Smaller signature size

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
- If prover needs to check multiple multiplications with a same multiplier,
- e.g. $x_{1} \cdot y=z_{1}, x_{2} \cdot y=z_{2}$
- Then, the prover can prove them in a batched way
- More same multiplier \rightarrow Smaller signature size

Serial S-box
(Limited application of repeated multiplier)

Parallel S-box (Full application of repeated multiplier)

Appropriate Choice of S-box

- Requirements

Security	Efficiency
Invertible	Using large field multiplication
Nice differential/linear properties	Few multiplications to verify
High-degree	(e.g., $\left.S(x)=x^{-1} \Rightarrow x \cdot S(x)=1\right)$
Small number of quadratic equations	

Appropriate Choice of S-box

- Requirements

Security	Efficiency
Invertible	Using large field multiplication
Nice differential/linear properties	Few multiplications to verify
High-degree	(e.g., $S(x)=x^{-1} \Rightarrow x \cdot S(x)=1$)
Small number of quadratic equations	

- Mersenne S-box
- $\operatorname{Mer}[e](x)=x^{2^{e}-1}$

Security	Efficiency
Invertible	$G F\left(2^{\lambda}\right)$ field multiplication
Moderate differential/linear properties	Single multiplication to verify
Degree e	(i.e., $\left.x \cdot S(x)=x^{2^{e}}\right)$
$3 n$ quadratic equations	

Symmetric Primitive AIM

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance

Symmetric Primitive AIM

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share

Symmetric Primitive AIM

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share
- Randomized structure
- Affine layer is generated from XOF

Symmetric Primitive AIM

Scheme	λ	n	ℓ	e_{1}	e_{2}	e_{3}	e_{*}
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
AIM-V	256	256	3	3	53	7	5

- Mersenne S-box
- Invertible, high-degree, quadratic relation
- Requires a single multiplication
- Produces $3 n$ quadratic equations
- Moderate DC/LC resistance
- Repetitive structure
- Parallel application of S-boxes
- Feed-forward construction
- Fully exploit the BN++ optimizations
- Locally-computable output share
- Randomized structure
- Affine layer is generated from XOF

Analyses on AIM

Recent Analysis on AIM

- Recent analysis on AIM
- [LMOM23] Fukang Liu et al. Fast exhaustive search, giving up to 12-bit security degradation
- [Liu23] Less costly algebraic attack, but not broken
- [Sar23] Efficient key search (by implementation), unknown amount of security degradation
- [ZWYGC23] Guess \& determine + linearization attack, giving up to 6-bit security degradation

Recent Analysis on AIM

- Recent analysis on AIM
- [LMOM23] Fukang Liu et al. Fast exhaustive search, giving up to 12-bit security degradation
- [Liu23] Less costly algebraic attack, but not broken
- [Sar23] Efficient key search (by implementation), unknown amount of security degradation
- [ZWYGC23] Guess \& determine + linearization attack, giving up to 6-bit security degradation
- Mainly, there are two vulnerabilities in the structure of AIM
- Low degree representation in n variables \Rightarrow Fast exhaustive search attack
- Common input to the parallel Mersenne S-boxes \Rightarrow Structural vulnerability

Fast Exhaustive Search Attack

Fast Exhaustive Search Attack

- Boolean polynomial system can be brute-force searched with $4 d \log n 2^{n}$ computation and $O\left(n^{d+2}\right)$

Fast Exhaustive Search Attack

- Boolean polynomial system can be brute-force searched with $4 d \log n 2^{n}$ computation and $O\left(n^{d+2}\right)$
- If degree d is small enough, this type of fast exhaustive search may be faster than naive bruteforce search

Fast Exhaustive Search Attack

- Boolean polynomial system can be brute-force searched with $4 d \log n 2^{n}$ computation and $O\left(n^{d+2}\right)$
- If degree d is small enough, this type of fast exhaustive search may be faster than naive bruteforce search
- The result of Liu et al. [LMOM23]

	n	Deg	Log(Time) [bits]	Log(Mem) [bits]
AIM-I	128	10	$136.2(-10.2)$	61.7
AIM-III	192	14	$200.7(-11.2)$	84.3
AIM-V	256	15	$265.0(-12.0)$	95.1

[^0]
Structural Vulnerability

Inputs to parallel S-boxes are all the same

Structural Vulnerability

Inputs to parallel S-boxes are all the same

- Find some $d \mid\left(2^{n}-1\right)$ such that

$$
\left\{\begin{array}{l}
\operatorname{Mer}\left[e_{1}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{1}} \cdot \mathrm{pt}^{t^{t_{1}}} \\
\operatorname{Mer}\left[e_{2}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{2}} \cdot \mathrm{pt}^{t^{t_{2}}} \\
\operatorname{Mer}\left[e_{3}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{3}} \cdot \mathrm{pt}^{t^{t_{3}}}
\end{array}\right.
$$

Structural Vulnerability

Inputs to parallel S-boxes are all the same

- Find some $d \mid\left(2^{n}-1\right)$ such that

$$
\left\{\begin{array}{l}
\operatorname{Mer}\left[e_{1}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{1}} \cdot \mathrm{pt}^{2^{t_{1}}} \\
\operatorname{Mer}\left[e_{2}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{2}} \cdot \mathrm{pt}^{t^{t_{2}}} \\
\operatorname{Mer}\left[e_{3}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{3}} \cdot \mathrm{pt}^{t^{t_{3}}}
\end{array}\right.
$$

- When pt ${ }^{d}$ is guessed, above system becomes linear

Structural Vulnerability

Inputs to parallel S-boxes are all the same

- Find some $d \mid\left(2^{n}-1\right)$ such that

$$
\left\{\begin{array}{l}
\operatorname{Mer}\left[e_{1}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{1}} \cdot \mathrm{pt}^{t^{t_{1}}} \\
\operatorname{Mer}\left[e_{2}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{2}} \cdot \mathrm{pt}^{t^{t_{2}}} \\
\operatorname{Mer}\left[e_{3}\right](\mathrm{pt})=\left(\mathrm{pt}^{d}\right)^{s_{3}} \cdot \mathrm{pt}^{t^{t_{3}}}
\end{array}\right.
$$

- When pt ${ }^{d}$ is guessed, above system becomes linear
- The result of Zhang et al. [ZWYGC23]

	n	d	Log(Time) [enc]
AIM-I	128	5	$125.7(-2.3)$
AIM-III	192	45	$186.5(-5.5)$
AIM-V	256	3	$254.4(-1.6)$
* Compared to the claimed security level			

AIM2: Secure Patch for Algebraic Attacks

- Inverse Mersenne S-box
- $\operatorname{Mer}[e]^{-1}(x)=x^{a}$
- $a=\left(2^{e}-1\right)^{-1} \bmod \left(2^{n}-1\right)$
- More resistant to algebraic attacks

AIM2: Secure Patch for Algebraic Attacks

- Inverse Mersenne S-box
- $\operatorname{Mer}[e]^{-1}(x)=x^{a}$
- $a=\left(2^{e}-1\right)^{-1} \bmod \left(2^{n}-1\right)$
- More resistant to algebraic attacks
- Larger exponents
- To mitigate fast exhaustive search

AIM2: Secure Patch for Algebraic Attacks

- Inverse Mersenne S-box
- $\operatorname{Mer}[e]^{-1}(x)=x^{a}$
- $a=\left(2^{e}-1\right)^{-1} \bmod \left(2^{n}-1\right)$
- More resistant to algebraic attacks
- Larger exponents
- To mitigate fast exhaustive search
- Fixed constant addition
- To differentiate inputs of S-boxes
- Increase the degree of composite power function

$$
\left(x^{a}\right)^{b} \text { vs }\left(x^{a}+c\right)^{b}
$$

AIM2: Secure Patch for Algebraic Attacks

- Inverse Mersenne S-box
- $\operatorname{Mer}[e]^{-1}(x)=x^{a}$
- $a=\left(2^{e}-1\right)^{-1} \bmod \left(2^{n}-1\right)$
- More resistant to algebraic attacks
- Larger exponents
- To mitigate fast exhaustive search
- Fixed constant addition
- To differentiate inputs of S-boxes
- Increase the degree of composite power function

$$
\left(x^{a}\right)^{b} \text { vs }\left(x^{a}+c\right)^{b}
$$

[^1]
Analysis on AIM2

- Algebraic attacks
- Fast exhaustive search: mitigated by high exponents
- Brute-force search of quadratic equations
- Toy experiment of good intermediate variables

Analysis on AIM2

- Algebraic attacks
- Fast exhaustive search: mitigated by high exponents
- Brute-force search of quadratic equations
- Toy experiment of good intermediate variables
- Other attacks
- Exhaustive key search: slightly increased complexity
- LC/DC: almost same
- Quantum attacks: complexities change not critically

Analysis on AIM2

- Algebraic attacks
- Fast exhaustive search: mitigated by high exponents
- Brute-force search of quadratic equations
- Toy experiment of good intermediate variables
- Other attacks
- Exhaustive key search: slightly increased complexity
- LC/DC: almost same
- Quantum attacks: complexities change not critically
- Performance
- Signature size: exactly the same
- Sign/verify time: $\leq 10 \%$ increase

Analysis on AIM2

- Algebraic attacks
- Fast exhaustive search: mitigated by high exponents
- Brute-force search of quadratic equations
- Toy experiment of good intermediate variables
- Other attacks
- Exhaustive key search: slightly increased complexity
- LC/DC: almost same
- Quantum attacks: complexities change not critically
- Performance
- Signature size: exactly the same
- Sign/verify time: $\leq 10 \%$ increase
- White paper can be found in our website and ePrint Archive 2023/1474

Performance Comparison

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Dilithium2	1312	2420	0.10	0.03
Falcon-512	897	690	0.27	0.04
SPHINCS ${ }^{+}$-128s	32	7856	315.74	0.35
SPHINCS ${ }^{+}$-128f	32	17088	16.32	0.97
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
$\mathrm{Rainier}_{3}$	32	8544	0.97	0.89
$\mathrm{BN}++\mathrm{Rain}_{3}$	32	6432	0.83	0.77
AlMer-L1	32	5904	0.59	0.53
AlMer-L1	32	4176	4.42	4.31
AlMer2-L1	32	5904	0.61	0.53
AlMer2-L1	32	4176	4.47	4.33

* Performance figures of AIMer has been updated from the proceeding version

Conclusion

- Summary
- We propose symmetric primitive AIM, which is efficiently provable in BN++ proof system
- AIM has recently been analyzed up to 12-bit security degradation
- We patched AIM to mitigate the analyses (AIM2) without significant performance overhead
- The document about AIM2 can be found in ePrint Archive 2023/1474
- Remark
- We submitted AIMer to KpqC and NIST PQC competition
- Our website: https://aimer-signature.org
- We are waiting for third-party analysis!

Thank you!

Check out our website!

[^0]: * Compared to the claimed security level

[^1]: * S. Kim et al. "Mitigation on the AIM Cryptanalysis". Cryptology ePrint Archive. Report 2023/1474

