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• MPC-in-the-Head (MPCitH) paradigm is a conversion from MPC to ZKP

• A signature scheme is obtained if MPCitH is combined with Fiat-Shamir transform and OWF 

• Contribution

• We propose symmetric primitive AIM for shorter MPCitH-based signatures

• We reduce signature size by ≥8% compared to previous MPCitH-based signature schemes

• Amendment

• Recently, there have been multiple analyses on AIM

• We patched AIM to AIM2 without significant performance degradation
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• Kales and Zaverucha proposed an MPCitH-based proof system BN++

• Requires only random oracle and one-way function

• An arithmetic circuit is efficiently provable by BN++ if:

• Arithmetic is over a large field (of size ≈ 𝜆)

• Small number of multiplications

• The same multiplier is repeated (𝑥1 ⋅ 𝑦 = 𝑧1, 𝑥2 ⋅ 𝑦 = 𝑧2)

• An output of a multiplication is already known (e.g., 𝑦 = 𝑥−1 ⇒ 𝑥𝑦 = 1)

• Given a one-way function 𝑓 𝑥 = 𝑦, BN++ proof of 𝑥 becomes a signature scheme
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Appropriate Choice of S-box

• Requirements

• Mersenne S-box

• Mer[𝑒] 𝑥 = 𝑥2
𝑒−1

Security Efficiency

Invertible Using large field multiplication

Nice differential/linear properties Few multiplications to verify

High-degree (e.g., 𝑆 𝑥 = 𝑥−1 ⇒ 𝑥 ⋅ 𝑆(𝑥) = 1)

Small number of quadratic equations

Security Efficiency

Invertible 𝐺𝐹 2𝜆 field multiplication

Moderate differential/linear properties Single multiplication to verify

Degree 𝑒 (i.e., 𝑥 ⋅ 𝑆(𝑥) = 𝑥2
𝑒
)

3𝑛 quadratic equations
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• [Sar23] Efficient key search (by implementation), unknown amount of security degradation

• [ZWYGC23] Guess & determine + linearization attack, giving up to 6-bit security degradation

• Mainly, there are two vulnerabilities in the structure of AIM
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Fast Exhaustive Search Attack

• Boolean polynomial system can be brute-force 
searched with 4𝑑 log𝑛 2𝑛 computation and 𝑂(𝑛𝑑+2)

• If degree 𝑑 is small enough, this type of fast 
exhaustive search may be faster than naive brute-
force search

• The result of Liu et al. [LMOM23]

𝑛 Deg Log(Time) [bits] Log(Mem) [bits]

AIM-I 128 10 136.2 (−10.2) 61.7

AIM-III 192 14 200.7 (−11.2) 84.3

AIM-V 256 15 265.0 (−12.0) 95.1

* Compared to the claimed security level

AIM iv pt = ct
⇔ 𝐹 𝑥 = 𝑦 & deg𝐹 = 𝑑



Structural Vulnerability

Inputs to parallel S-boxes are all the same



Structural Vulnerability

• Find some 𝑑|(2𝑛 − 1) such that

Mer 𝑒1 pt = pt𝑑
𝑠1
⋅ pt2

𝑡1

Mer 𝑒2 pt = pt𝑑
𝑠2
⋅ pt2

𝑡2

Mer 𝑒3 pt = pt𝑑
𝑠3
⋅ pt2

𝑡3

Inputs to parallel S-boxes are all the same



Structural Vulnerability

• Find some 𝑑|(2𝑛 − 1) such that

Mer 𝑒1 pt = pt𝑑
𝑠1
⋅ pt2

𝑡1

Mer 𝑒2 pt = pt𝑑
𝑠2
⋅ pt2

𝑡2

Mer 𝑒3 pt = pt𝑑
𝑠3
⋅ pt2

𝑡3

• When pt𝑑 is guessed, above system becomes linear

Inputs to parallel S-boxes are all the same



Structural Vulnerability

• Find some 𝑑|(2𝑛 − 1) such that

Mer 𝑒1 pt = pt𝑑
𝑠1
⋅ pt2

𝑡1

Mer 𝑒2 pt = pt𝑑
𝑠2
⋅ pt2

𝑡2

Mer 𝑒3 pt = pt𝑑
𝑠3
⋅ pt2

𝑡3

• When pt𝑑 is guessed, above system becomes linear

• The result of Zhang et al. [ZWYGC23]

𝑛 𝑑 Log(Time) [enc]

AIM-I 128 5 125.7 (−2.3)

AIM-III 192 45 186.5 (−5.5)

AIM-V 256 3 254.4 (−1.6)

* Compared to the claimed security level

Inputs to parallel S-boxes are all the same
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Analysis on AIM2

• Algebraic attacks

• Fast exhaustive search: mitigated by high exponents

• Brute-force search of quadratic equations

• Toy experiment of good intermediate variables

• Other attacks

• Exhaustive key search: slightly increased complexity

• LC/DC: almost same

• Quantum attacks: complexities change not critically

• Performance

• Signature size: exactly the same

• Sign/verify time: ≤10% increase

• White paper can be found in our website and ePrint Archive 2023/1474



Performance Comparison

Scheme pk (B) sig (B) Sign (ms) Verify (ms)

Dilithium2 1312 2420 0.10 0.03

Falcon-512 897 690 0.27 0.04

SPHINCS+-128s 32 7856 315.74 0.35

SPHINCS+-128f 32 17088 16.32 0.97

Picnic1-L1-full 32 30925 1.16 0.91

Picnic3 32 12463 5.83 4.24

Banquet 32 19776 7.09 5.24

Rainier3 32 8544 0.97 0.89

BN++Rain3 32 6432 0.83 0.77

AIMer-L1 32 5904 0.59 0.53

AIMer-L1 32 4176 4.42 4.31

AIMer2-L1 32 5904 0.61 0.53

AIMer2-L1 32 4176 4.47 4.33

* Performance figures of AIMer has been updated from the proceeding version



Conclusion

• Summary

• We propose symmetric primitive AIM, which is efficiently provable in BN++ proof system

• AIM has recently been analyzed up to 12-bit security degradation

• We patched AIM to mitigate the analyses (AIM2) without significant performance overhead

• The document about AIM2 can be found in ePrint Archive 2023/1474

• Remark

• We submitted AIMer to KpqC and NIST PQC competition

• Our website: https://aimer-signature.org

• We are waiting for third-party analysis!

https://aimer-signature.org/


Thank you!
Check out our website!


