AIM: Symmetric Primitive for Shorter Signatures with Stronger Security

Seongkwang Kim¹

Mincheol Son² Dukjae Moon¹ Sangyub Lee¹ Byeonghak Lee¹ Joohee Lee³ Jihoon Kwon¹ Hyojin Yoon¹

Jincheol Ha²

Jooyoung Lee²

Jihoon Cho¹

¹ Samsung SDS, Seoul, Korea ² KAIST, Daejeon, Korea

³ Sungshin Women's University, Seoul, Korea

ACM CCS 2023

Brief Overview

- Background
 - MPC-in-the-Head (MPCitH) paradigm is a conversion from MPC to ZKP
 - A signature scheme is obtained if MPCitH is combined with Fiat-Shamir transform and OWF

Brief Overview

- Background
 - MPC-in-the-Head (MPCitH) paradigm is a conversion from MPC to ZKP
 - A signature scheme is obtained if MPCitH is combined with Fiat-Shamir transform and OWF
- Contribution
 - We propose symmetric primitive AIM for shorter MPCitH-based signatures
 - We reduce signature size by \geq 8% compared to previous MPCitH-based signature schemes

Brief Overview

- Background
 - MPC-in-the-Head (MPCitH) paradigm is a conversion from MPC to ZKP
 - A signature scheme is obtained if MPCitH is combined with Fiat-Shamir transform and OWF
- Contribution
 - We propose symmetric primitive AIM for shorter MPCitH-based signatures
 - We reduce signature size by \geq 8% compared to previous MPCitH-based signature schemes
- Amendment
 - Recently, there have been multiple analyses on AIM
 - We patched AIM to AIM2 without significant performance degradation

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function *f*

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function *f*
 - 2. Prover commits to all the views of the parties

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function *f*
 - 2. Prover commits to all the views of the parties
 - 3. Verifier sends a random challenge

- Ishai et al. proposed a generic conversion from MPC to ZKP
- Prover simulates a multiparty computation in her head
 - 1. Prover simulates a multiparty computation of a function *f*
 - 2. Prover commits to all the views of the parties
 - 3. Verifier sends a random challenge
 - 4. Prover opens the challenged view
 - 5. Verifier checks consistency

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function
- An arithmetic circuit is efficiently provable by BN++ if:
 - Arithmetic is over a large field (of size $\approx \lambda$)
 - Small number of multiplications
 - The same multiplier is repeated $(x_1 \cdot y = z_1, x_2 \cdot y = z_2)$
 - An output of a multiplication is already known (e.g., $S(x) = x^{-1} \Rightarrow x \cdot S(x) = 1$)

BN++ Proof System

- Kales and Zaverucha proposed an MPCitH-based proof system BN++
- Requires only random oracle and one-way function
- An arithmetic circuit is efficiently provable by BN++ if:
 - Arithmetic is over a large field (of size $\approx \lambda$)
 - Small number of multiplications
 - The same multiplier is repeated $(x_1 \cdot y = z_1, x_2 \cdot y = z_2)$
 - An output of a multiplication is already known (e.g., $y = x^{-1} \Rightarrow xy = 1$)
- Given a one-way function f(x) = y, BN++ proof of x becomes a signature scheme

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
 - S-boxes on a large field
 - Low multiplicative complexity

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
 - S-boxes on a large field
 - Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
 - MiMC (AC 16, AC 20)
 - Agrasta (C 18, AC 21)
 - Jarvis/Friday (ePrint 18, AC 19)
 - Chaghri (CCS 22, EC 23)

Motivation

- MPC(itH)-friendly symmetric primitives are advanced in directions of:
 - S-boxes on a large field
 - Low multiplicative complexity
- Some symmetric primitives based on large S-boxes have been broken by algebraic attacks
 - MiMC (AC 16, AC 20)
 - Agrasta (C 18, AC 21)
 - Jarvis/Friday (ePrint 18, AC 19)
 - Chaghri (CCS 22, EC 23)

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
 - If prover needs to check multiple multiplications with a same multiplier,
 - e.g. $x_1 \cdot y = z_1, x_2 \cdot y = z_2$
 - Then, the prover can prove them in a batched way
 - More same multiplier \rightarrow Smaller signature size

Repetitive Structure for BN++

- Repeated multiplier technique (in BN++)
 - If prover needs to check multiple multiplications with a same multiplier,
 - e.g. $x_1 \cdot y = z_1, x_2 \cdot y = z_2$
 - Then, the prover can prove them in a batched way
 - More same multiplier \rightarrow Smaller signature size

Serial S-box (Limited application of repeated multiplier)

Parallel S-box (Full application of repeated multiplier)

Appropriate Choice of S-box

• Requirements

Security	Efficiency
Invertible	Using large field multiplication
Nice differential/linear properties	Few multiplications to verify
High-degree	$(e.g., S(x) = x^{-1} \Rightarrow x \cdot S(x) = 1)$
Small number of quadratic equations	

Appropriate Choice of S-box

• Requirements

Security	Efficiency
Invertible	Using large field multiplication
Nice differential/linear properties	Few multiplications to verify
High-degree	$(e.g., S(x) = x^{-1} \Rightarrow x \cdot S(x) = 1)$
Small number of quadratic equations	

- Mersenne S-box
 - $Mer[e](x) = x^{2^{e}-1}$

Security	Efficiency
Invertible	$GF(2^{\lambda})$ field multiplication
Moderate differential/linear properties	Single multiplication to verify
Degree e	(i.e., $x \cdot S(x) = x^{2^e}$)
3n quadratic equations	

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance
- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
 - Locally-computable output share

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance
- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
 - Locally-computable output share
- Randomized structure
 - Affine layer is generated from XOF

Scheme	λ	n	ℓ	e_1	e_2	e_3	e_*
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
$AIM\text{-}\mathrm{V}$	256	256	3	3	53	7	5

- Mersenne S-box
 - Invertible, high-degree, quadratic relation
 - Requires a single multiplication
 - Produces 3*n* quadratic equations
 - Moderate DC/LC resistance
- Repetitive structure
 - Parallel application of S-boxes
 - Feed-forward construction
 - Fully exploit the BN++ optimizations
 - Locally-computable output share
- Randomized structure
 - Affine layer is generated from XOF

Recent Analysis on AIM

- Recent analysis on AIM
 - [LMOM23] Fukang Liu et al. Fast exhaustive search, giving up to 12-bit security degradation
 - [Liu23] Less costly algebraic attack, but not broken
 - [Sar23] Efficient key search (by implementation), unknown amount of security degradation
 - [ZWYGC23] Guess & determine + linearization attack, giving up to 6-bit security degradation

[LMOM23] F. Liu, M. Mahzoun, M. Øygarden, and W. Meier. *Algebraic Attacks on RAIN and AIM Using Equivalent Representations*. IACR Cryptology ePrint Archive. Report 2023/1133. <u>https://eprint.iacr.org/2023/1133</u>.

[Liu23] F. Liu. *Mind Multiple Power Maps: Algebraic Cryptanalysis of Full AIM for Post-quantum Signature Scheme AIMer*. In private communication. 2023. [Sar23] M. O. Saarinen. *Round 1 (Additional Signatures) OFFICIAL COMMENT: AIMer*. <u>https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2iIXbINy0</u>. [ZWYGC23] K. Zhang, Q. Wang, Y. Yu, C. Guo, and H. Cui. *Algebraic Attacks on Round-Reduced RAIN and Full AIM-III*. IACR Cryptology ePrint Archive. Report 2023/1397. <u>https://eprint.iacr.org/2023/1397</u>. To appear Asiacrypt 2023.

Recent Analysis on AIM

- Recent analysis on AIM
 - [LMOM23] Fukang Liu et al. Fast exhaustive search, giving up to 12-bit security degradation
 - [Liu23] Less costly algebraic attack, but not broken
 - [Sar23] Efficient key search (by implementation), unknown amount of security degradation
 - [ZWYGC23] Guess & determine + linearization attack, giving up to 6-bit security degradation
- Mainly, there are two vulnerabilities in the structure of AIM
 - Low degree representation in n variables \Rightarrow Fast exhaustive search attack
 - Common input to the parallel Mersenne S-boxes ⇒ Structural vulnerability

[LMOM23] F. Liu, M. Mahzoun, M. Øygarden, and W. Meier. *Algebraic Attacks on RAIN and AIM Using Equivalent Representations*. IACR Cryptology ePrint Archive. Report 2023/1133. <u>https://eprint.iacr.org/2023/1133</u>.

[Liu23] F. Liu. *Mind Multiple Power Maps: Algebraic Cryptanalysis of Full AIM for Post-quantum Signature Scheme AIMer*. In private communication. 2023. [Sar23] M. O. Saarinen. *Round 1 (Additional Signatures) OFFICIAL COMMENT: AIMer*. <u>https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/BI2iIXblNy0</u>. [ZWYGC23] K. Zhang, Q. Wang, Y. Yu, C. Guo, and H. Cui. *Algebraic Attacks on Round-Reduced RAIN and Full AIM-III*. IACR Cryptology ePrint Archive. Report 2023/1397. <u>https://eprint.iacr.org/2023/1397</u>. To appear Asiacrypt 2023.

• Boolean polynomial system can be brute-force searched with $4d \log n 2^n$ computation and $O(n^{d+2})$

- Boolean polynomial system can be brute-force searched with $4d \log n 2^n$ computation and $O(n^{d+2})$
- If degree d is small enough, this type of fast exhaustive search may be faster than naive bruteforce search

$$AIM[iv](pt) = ct$$

$$\Leftrightarrow F(x) = y \& \deg F = d$$

- Boolean polynomial system can be brute-force searched with $4d \log n 2^n$ computation and $O(n^{d+2})$
- If degree d is small enough, this type of fast exhaustive search may be faster than naive bruteforce search
- The result of Liu et al. [LMOM23]

	n	Deg	Log(Time) [bits]	Log(Mem) [bits]
AIM-I	128	10	136.2 (-10.2)	61.7
AIM-III	192	14	200.7 (-11.2)	84.3
AIM-V	256	15	265.0 (-12.0)	95.1

* Compared to the claimed security level

Inputs to parallel S-boxes are all the same

• Find some $d|(2^n - 1)$ such that

 $\begin{cases} \operatorname{Mer}[e_1](\mathrm{pt}) = (\mathrm{pt}^d)^{s_1} \cdot \mathrm{pt}^{2^{t_1}} \\ \operatorname{Mer}[e_2](\mathrm{pt}) = (\mathrm{pt}^d)^{s_2} \cdot \mathrm{pt}^{2^{t_2}} \\ \operatorname{Mer}[e_3](\mathrm{pt}) = (\mathrm{pt}^d)^{s_3} \cdot \mathrm{pt}^{2^{t_3}} \end{cases}$

Inputs to parallel S-boxes are all the same

• Find some $d|(2^n - 1)$ such that

 $\begin{cases} \operatorname{Mer}[e_1](\operatorname{pt}) = \left(\operatorname{pt}^d\right)^{s_1} \cdot \operatorname{pt}^{2^{t_1}} \\ \operatorname{Mer}[e_2](\operatorname{pt}) = \left(\operatorname{pt}^d\right)^{s_2} \cdot \operatorname{pt}^{2^{t_2}} \\ \operatorname{Mer}[e_3](\operatorname{pt}) = \left(\operatorname{pt}^d\right)^{s_3} \cdot \operatorname{pt}^{2^{t_3}} \end{cases} \end{cases}$

• When pt^d is guessed, above system becomes linear

Inputs to parallel S-boxes are all the same

Inputs to parallel S-boxes are all the same

• Find some $d|(2^n - 1)$ such that

 $\begin{cases} \operatorname{Mer}[e_1](\operatorname{pt}) = \left(\operatorname{pt}^d\right)^{s_1} \cdot \operatorname{pt}^{2^{t_1}} \\ \operatorname{Mer}[e_2](\operatorname{pt}) = \left(\operatorname{pt}^d\right)^{s_2} \cdot \operatorname{pt}^{2^{t_2}} \\ \operatorname{Mer}[e_3](\operatorname{pt}) = \left(\operatorname{pt}^d\right)^{s_3} \cdot \operatorname{pt}^{2^{t_3}} \end{cases} \end{cases}$

- When pt^d is guessed, above system becomes linear
- The result of Zhang et al. [ZWYGC23]

	n	d	Log(Time) [enc]
AIM-I	128	5	125.7 (-2.3)
AIM-III	192	45	186.5 (-5.5)
AIM-V	256	3	254.4 (-1.6)

* Compared to the claimed security level

- Inverse Mersenne S-box
 - $Mer[e]^{-1}(x) = x^a$
 - $a = (2^e 1)^{-1} \mod (2^n 1)$
 - More resistant to algebraic attacks

* S. Kim et al. "Mitigation on the AIM Cryptanalysis". Cryptology ePrint Archive. Report 2023/1474

- Inverse Mersenne S-box
 - $Mer[e]^{-1}(x) = x^a$
 - $a = (2^e 1)^{-1} \mod (2^n 1)$
 - More resistant to algebraic attacks
- Larger exponents
 - To mitigate fast exhaustive search

- Inverse Mersenne S-box
 - $Mer[e]^{-1}(x) = x^a$
 - $a = (2^e 1)^{-1} \mod (2^n 1)$
 - More resistant to algebraic attacks
- Larger exponents
 - To mitigate fast exhaustive search
- Fixed constant addition
 - To differentiate inputs of S-boxes
 - Increase the degree of composite power function

 $(x^a)^b$ vs $(x^a + c)^b$

- Inverse Mersenne S-box
 - $Mer[e]^{-1}(x) = x^a$
 - $a = (2^e 1)^{-1} \mod (2^n 1)$
 - More resistant to algebraic attacks
- Larger exponents
 - To mitigate fast exhaustive search
- Fixed constant addition
 - To differentiate inputs of S-boxes
 - Increase the degree of composite power function

 $(x^a)^b$ vs $(x^a + c)^b$

* S. Kim et al. "Mitigation on the AIM Cryptanalysis". Cryptology ePrint Archive. Report 2023/1474

- Algebraic attacks
 - Fast exhaustive search: mitigated by high exponents
 - Brute-force search of quadratic equations
 - Toy experiment of good intermediate variables

- Algebraic attacks
 - Fast exhaustive search: mitigated by high exponents
 - Brute-force search of quadratic equations
 - Toy experiment of good intermediate variables
- Other attacks
 - Exhaustive key search: slightly increased complexity
 - LC/DC: almost same
 - Quantum attacks: complexities change not critically

- Algebraic attacks
 - Fast exhaustive search: mitigated by high exponents
 - Brute-force search of quadratic equations
 - Toy experiment of good intermediate variables
- Other attacks
 - Exhaustive key search: slightly increased complexity
 - LC/DC: almost same
 - Quantum attacks: complexities change not critically
- Performance
 - Signature size: exactly the same
 - Sign/verify time: ≤10% increase

- Algebraic attacks
 - Fast exhaustive search: mitigated by high exponents
 - Brute-force search of quadratic equations
 - Toy experiment of good intermediate variables
- Other attacks
 - Exhaustive key search: slightly increased complexity
 - LC/DC: almost same
 - Quantum attacks: complexities change not critically
- Performance
 - Signature size: exactly the same
 - Sign/verify time: ≤10% increase
- White paper can be found in our website and ePrint Archive 2023/1474

Performance Comparison

Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Dilithium2	1312	2420	0.10	0.03
Falcon-512	897	690	0.27	0.04
SPHINCS ⁺ -128s	32	7856	315.74	0.35
SPHINCS ⁺ -128f	32	17088	16.32	0.97
Picnic1-L1-full	32	30925	1.16	0.91
Picnic3	32	12463	5.83	4.24
Banquet	32	19776	7.09	5.24
Rainier ₃	32	8544	0.97	0.89
$BN++Rain_3$	32	6432	0.83	0.77
AlMer-L1	32	5904	0.59	0.53
AlMer-L1	32	4176	4.42	4.31
AIMer2-L1	32	5904	0.61	0.53
AlMer2-L1	32	4176	4.47	4.33

* Performance figures of AIMer has been updated from the proceeding version

Conclusion

- Summary
 - We propose symmetric primitive AIM, which is efficiently provable in BN++ proof system
 - AIM has recently been analyzed up to 12-bit security degradation
 - We patched AIM to mitigate the analyses (AIM2) without significant performance overhead
 - The document about AIM2 can be found in ePrint Archive 2023/1474
- Remark
 - We submitted AIMer to KpqC and NIST PQC competition
 - Our website: <u>https://aimer-signature.org</u>
 - We are waiting for third-party analysis!

Thank you! Check out our website!

